ABSTRACT
People live in a physical world surrounded by materials that are used to build what we need. Those that study landscape architecture attend accredited programs whose stated mission is to prepare them to enter a licensed design profession that addresses these needs. In this country, curricula are encouraged to have variations ensuring diversity and reflecting regional issues and institutional identities. Nevertheless, all students are required to take a class on “Site Design and Implementation: materials, methods, technologies, application” (LAAB, 2013, p.3.B), where competency means understanding the relationship between materials and methods of construction and design. This paper argues that a comprehensive approach to teaching building materials better serves design students. Rather than focusing on “how-to” guidelines or personal expositions, this approach incorporates the study of history and theory, and technology and practice – all referring to issues of sustainability. Thus connected, the materials class supplies the vocabulary for thinking about design, perception, and experience. This paper also reviews the research methods used to develop this approach, which is the subject of my recent book, The Innovative Use of Materials in Architecture and Landscape Architecture: History, Theory and Performance, (2014). Its fundamental premise is that innovation in design comes less from engineering extraordinary chemical compounds or complex assemblies, and more from asking questions pertinent to current concerns and responding in ways sympathetic to a material’s inherent character and capability. Using images of built details, this comprehensive approach helps students develop habits of observation, which lead to life-long learning in professional practice. Limited by a classroom delivery, a more robust student experience would also include activities in the field where the physicality of materials becomes increasingly apparent. In order to make materials matter in landscape architecture education, building materials must be linked to form as companions in design; not as an after-thought, but as a generator.